Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore
نویسندگان
چکیده
The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis-trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol-keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis-trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness.
منابع مشابه
An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
The neutral form of the chromophore in wild-type green fluorescent protein (wtGFP) undergoes excited-state proton transfer (ESPT) upon excitation, resulting in characteristic green (508 nm) fluorescence. This ESPT reaction involves a proton relay from the phenol hydroxyl of the chromophore to the ionized side chain of E222, and results in formation of the anionic chromophore in a protein enviro...
متن کاملConformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins.
Members of the green fluorescent protein (GFP) family form chromophores by modifications of three internal amino acid residues. Previously, many key characteristics of chromophores were studied using model compounds. However, no studies of intermolecular excited-state proton transfer (ESPT) with GFP-like synthetic chromophores have been performed because they either are nonfluorescent or lack a...
متن کاملGreen fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics.
In the preceding paper [Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E. P., Yarbrough, D. K., Chu, S., Xi, L., Boxer, S. G., Montrose, M. H., and Remington, S. J. (2002) Biochemistry 41, 15477-15488], novel mutants of the green fluorescent protein (GFP) that exhibit dual steady-state emission properties were characterized structurally and discussed as potential intracellular pH prob...
متن کاملUltrafast proton shuttling in Psammocora cyan fluorescent protein.
Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT)...
متن کاملGround-State Proton Transfer Kinetics in Green Fluorescent Protein
Proton transfer plays an important role in the optical properties of green fluorescent protein (GFP). While much is known about excited-state proton transfer reactions (ESPT) in GFP occurring on ultrafast time scales, comparatively little is understood about the factors governing the rates and pathways of ground-state proton transfer. We have utilized a specific isotopic labeling strategy in co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016